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- Revisiting Deep Learning Models for Tabular Data
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I The “Shallow” state of the art
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I The “Shallow” state of the art
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I The “Shallow” state of the art
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- Proposed baseline — ResNet like

ResNet

256-d

ResNet-like

ResNet(r) = Prediction (ResNetBlock (... (ResNetBlock (Linear(r)))))
ResNetBlock(r) = r + Dropout(Linear|Dropout(RelLU{Linear|(BatchNorm{x))))))
Prediction(r) = Linear (ReLU |(BatchNorm(zx)))
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- FT-Transformer
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Figure |: The FT-Transformer architecture. Firstly, Feature Tokenizer transforms features to embed-
dings. The embeddings are then processed by the Transformer module and the final representation of
the [CLS] token 1s used for prediction.
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- FT-Transformer

% FT-Transformer ( Feature tokenizer + Transformer )
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Figure 2: (a) Feature Tokenizer; in the example, there are three numerical and two categorical features;
i(b) One Transformer layer.
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- Feature Tokenizer (Numerical)
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- Feature Tokenizer (Categorical)
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- FT-Transformer

% FT-Transformer ( Feature tokenizer + Transformer )
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Figure |: The FT-Transformer architecture. Firstly, Feature Tokenizer transforms features to embed-
dings. The embeddings are then processed by the Transformer module and the final representation of
the [CLE] token is used for prediction.
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Figure 2: (a) Feature Tokenizer; in the example, there are three numerical and two categorical features;
(b) One Transformer layer.
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- FT-Transformer
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% FT-Transformer ( Feature tokenizer + Transformer )
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Figure |: The FT-Transformer architecture. Firstly, Feature Tokenizer transforms features to embed-
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- Experiment

+* Comparing DL models

Table 2: Results for DL. models. The metric values averaged over 15 random seeds are reported. See
supplementary for standard deviations. For each dataset, top results are in bold. “Top™ means “the
gap between this result and the result with the best score is not statistically significant™. For each
dataset, ranks are calculated by sorting the reported scores; the “rank™ column reports the average
rank across all datasets. Notation: FI-T ~ FT-Transformer, | ~ RMSE, T ~ accuracy

CA|l ADT HET JAT HIT ALT EPT YE| COT YA| MI| |rank (std)

TabNet 0.510 0.850 0.378 0.723 0.719 0.954 0.8806 8.909 0.957 0.823 0.751 7.5 (2.0)
SNN  0.493 0.854 0.373 0.719 0.722 0.954 0.8975 8.895 0.961 0.761 0.751 |6.4 (1.4)
Autolnt  0.474 0.859 0.372 0.721 0.725 0.945 0.8949 8.882 0.934 0.768 0.750 |5.7 (2.3)
GrowNet 0.487 0.857 - ~ 0722 - 08970 8.827 - 0.765 0.751]5.7 (2.2)
)
)

MLP 0.499 0.852 0.383 0.719 0.723 0.954 0.8977 8.853 0.962 0.757 0.747 |[4.8 (1.9
DCN2 0.484 0.853 0.385 0.716 0.723 0.955 0.8977 8.890 0.965 0.757 0.749 —1 7(2.0
NODE 0.464 0.858 0.359 0.727 0.726 0.918 0.8958 B8.784 0(.958 0.753 0.745|3.9 (2.8)
ResNet 0.486 0.854 0.396 0.728 0.727 0.963 0.8969 B8.846 0.964 0.757 0.748 3.3(1.?‘5)
FI-T 0.459 0.859 0.391 0.732 0.729 0.960 0.8982 8.855 0970 0.756 0.746 1.8 (1.2)
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+* Comparing DL models

Table 2: Results for DL. models. The metric values averaged over 15 random seeds are reported. See
supplementary for standard deviations. For each dataset, top results are in bold. “Top™ means “the
gap between this result and the result with the best score is not statistically significant™. For each
dataset, ranks are calculated by sorting the reported scores; the “rank™ column reports the average
rank across all datasets. Notation: FI-T ~ FT-Transformer, | ~ RMSE, T ~ accuracy

CA|l ADT HET JAT HIT ALT EPT YE| COT YA| MI| |rank (std)

TabNet 0.510 0.850 0.378 0.723 0.719 0.954 0.8896 8.909 0.957 0.823 0.751 7.5 (2.0)
SNN  0.493 0.854 0.373 0.719 0.722 0.954 0.8975 8.895 0.961 0.761 0.751 6.4 (1.4)
Autolnt  0.474 0.859 0.372 0.721 0.725 0.945 0.8049 8.882 0.934 0.768 0.750 5.7 (2.3)
GrowNet 0.487 0.857 - - 0.722 - 0.8970 8.827 -  0.765 0.751 5.7 (2.2)
MLP 0499 0.852 0.383 0.719 0.723 0.954 0.8077 8.853 0.962 0.757 0.747 [4.8 (1.9)| &t
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NODE 0.464 0.858 0.359 0.727 0.726 0.918 0.8058 8.784 0.958 0.753 0.745)3.9 (2.8)
ResNet  0.486 0.854 0.396 0.728 0.727 0.963 0.8969 8.846 0.964 0.757 0.748 3.3 (1.8)
FI-T  0.459 0.859 0.391 0.732 0.729 0.960 0.8982 8.855 0.970 0.756 0.746 | 1.8 (1.2)
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+* Comparing DL models

Table 2: Results for DL. models. The metric values averaged over 15 random seeds are reported. See
supplementary for standard deviations. For each dataset, top results are in bold. “Top™ means “the
gap between this result and the result with the best score is not statistically significant™. For each
dataset, ranks are calculated by sorting the reported scores; the “rank™ column reports the average
rank across all datasets. Notation: FI-T ~ FT-Transformer, | ~ RMSE, T ~ accuracy

CA|l ADT HET JAT HIT ALT EPT YE| COT YA| MI| |rank (std)

TabNet 0.510 0.850 0.378 0.723 0.719 0.954 0.8896 8.909 0.957 0.823 0.751 7.5 (2.0)
SNN  0.493 0.854 0.373 0.719 0.722 0.954 0.8975 8.895 0.961 0.761 0.751 6.4 (1.4)
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Table 2: Results for DL. models. The metric values averaged over 15 random seeds are reported. See
supplementary for standard deviations. For each dataset, top results are in bold. “Top™ means “the
gap between this result and the result with the best score is not statistically significant”. For each
dataset, ranks are calculated by sorting the reported scores; the “rank™ column reports the average
rank across all datasets. Notation: FI-T ~ FT-Transformer, | ~ RMSE, T ~ accuracy
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+* Comparing DL models
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c = cat(a, b) B
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a
Figure 2: The NODE architecture, consisting of densely connected NODE layers. Each layer con-
tains several trees whose outputs are concatenated and serve as input for the subsequent layer. The
final prediction is obtained by averaging the outputs of all trees from all the layers.

prediction

Structure of NODE
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CA|l ADT HET JAT HIT ALT EPT YE|l COt YA|l MI|

NODE 0.461 0.860 0.361 0.730 0.727 0.921 0.8970 8.716 0.965 0.750 0.744
ResNet 0.478 0.857 0.398 0.734 0.731 0.966 0.8976 &.770 0.967 0.751 0.745

FT-Transformer 0.448 0.860 0.398 0.739 0.731 0.967 0.8984 8.751 0.973 0.7T47 0.743

FT Transformer / ResNet-likeOl A| Ensemble & -& Z 1}




- Experiment

+ Comparing DL models and GBDT

Table 4: Results for ensembles of GBDT and the main DL models. For each model-dataset pair, the
metric value averaged over three ensembles is reported. See supplementary for standard deviations.
Notation follows Table 3.

CA|l ADt HE1 JAT HIt ALt EPT YE| COtT YAl M|

Default hyperparameters

XGBoost 0.462 0.874 0.348 0.711 0.717 0.924 0.8799 9.192 0.964 0.761 0.751
CatBoost 0.428 0.873 0.386 0.724 0.728 0.948 0.8893 8.885 0.910 0.749 0.744
FT-Transformer 0.454 0.860 0.395 0.734 0.731 0.966 0.8969 8.727 0.973 0.747 0.742

Tuned hyperparameters

XGBoost 0.431 0.872 0377 0.724 0.728 - 0.8861 B.819 0.969 0.732 (.742
CatBoost 0.423 0.874 0.388 0.727 0.729 - 0.8898 8.837 0.968 0.740 0.741
ResNet 0.478 0.857 0.398 0.734 0.731 0.966 0.8976 8.770 0.967 0.751 0.745

FT-Transformer 0.448 0.860 0.398 0.739 0.731 0.967 0.8984 8.751 0.973 0.747 0.743
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+ Comparing DL models and GBDT

Table 4: Results for ensembles of GBDT and the main DL models. For each model-dataset pair, the
metric value averaged over three ensembles is reported. See supplementary for standard deviations.
Notation follows Table 3.
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ResNet 0.478 0.857 0.398 0.734 0.731 0.966 0.8976 8.770 0.967 0.751 0.745
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- Experiment

+ Comparing DL models and GBDT

Table 4: Results for ensembles of GBDT and the main DL models. For each model-dataset pair, the
metric value averaged over three ensembles is reported. See supplementary for standard deviations.
Notation follows Table 3.

CAl ADT HEt JAt+ HIT ALt EPt+ YE] COT YAl MI|

Default hyperparameters

XGBoost 0.462 0.874 0.348 0.711 0.717 0.924 0.8799 9.192 0.964 0.761 0.751
CatBoost 0.428 0.873 0.386 0.724 0.728 0.948 0.8893 8.885 0.910 0.749 0.744
FT-Transformer 0.454 0.860 0.395 0.734 0.731 0.966 0.8969 8.727 0.973 0.747 0.742

Tuned hyperparameters

XGBoost 0.431 0.872 0.377 0.724 0.728 - 0.8861 B.819 0.969[0.732] 0.742
CatBoost [0.423 0.874] 0.388 0.727 0.729 - 0.8808 8.837 0.968 0.740]/0.741]
ResNet 0.478 0.857 0.398 0.734 0.731 0.966 0.8976 8.770 0.967 0.751 0.745

FT-Transformer 0.448 0.860 0.398 0.739 0.731 0.967 0.8984 8.751 0.973 0.747 0.743
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- Experiment

s When FT-Transformer is better than ResNet?

x ~ N(0, 1), y =« feepr(r) + (1 —a)- fpr(z).

024 —=— ResNet e

—e— FT-Transformer
—a—  CatBoost

(.0 T T T
0,00 0.25 .54 .75 1.00

o'
DL friendly GBDT friendly

Figure 3: Test RMSE averaged over five seeds
(shadows represent std. dev.). One o corresponds
to one task:; each task has the same set of train,
validation and test features, but different targets.
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- Xtab : Cross-table Pretraining for Tabular Transformers

< ICML 2023 AIXH, 1193] Q1 &

XTab: Cross-table Pretraining for Tabular Transformers

4 1

Bingzhao Zhu ' " Xingjian Shi®*" Nick Erickson?* MuLi®" George Karypis* Mahsa Shoaran
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- Motivation

< A9 O|o|E| (Tabular Data)2| 4|
v 2 A oE 2 E

(
Pre-training Fine-Tuning
Transfer N0
e g 2 O0O—0
Large Dataset
ex) CV / NLP New Task
N\
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- Motivation
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- Purpose
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- Purpose
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- Model Structure
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- Model Structure

[ Categorical column

Token count
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- Model Structure

] Categorical column

[ Numerical column Token count
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Reconstruction Head
Contrastive Head

Supervised Head

2*(192dim + ReLU)

NV



- Model Structure
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- Model Structure
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- Model Structure
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- Model Structure
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Model Structure

In Defense of the Unitary Scalarization
for Deep Multi-Task Learning

Yitaly Kurin® Alessandro De Palma®™
University of Oxford University of Oxford
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Ilya Kostrikov Shimon Whiteson M. Pawan Kumar
University of California, Berkeley University of Oxford University of Oxford
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- Experiment
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Error reduction
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- Experiment
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- Experiment

< Jd2iM Z= GBDTELI 2717

Methods Time (s) Rank
RF 66.87  7.14 +3.81
XGBoost 43.1f 5.06 + 3.08
= LightGBM 2397 5234325
g | CatBoost 322.8" 298 +2.66 |
S FastAl 806 7244344
g NN 1888  7.40 +3.43
2 TransTab-sl* 5397  11.04+275
§ TransTab-cl*  312.0  10.79 + 3.00
E FTT-1 189.2  10.19 +2.43
XTab-1 189.8  9.21 +2.57
FTT-h 5325  7.29+220
XTab-h 5063  6.93 +2.09
FTT-best 8109  4.94 +225
[ XTab-best 7559 439 +236 |
RF 1084.47  5.00 +2.40
XGBoost 86231 3.69 +2.45
LightGBM 28507  4.40 4+ 1.93
O [ CatBoost 152937 325 +2.10 |
T FastAl 5497 524 +238
NN 1163.5 532 +220
FTT 2221.1  4.58 +2.08
XTab 23353  4.51 +2.00

T CPU training time.
* Only evaluated on classification tasks.
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- Conclusion
< Revisiting Deep Learning Models for Tabular Data
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